MMP Learning Seminar Week 40

Applications of the existence of minimal models for vaneties of general type.
\rightarrow Flops connect minimal models.
\rightarrow Fans varieties are Mori dream spaces.
\rightarrow Canonical models of Mg in
\rightarrow Applications to singularity theory.

Theorem: (X, Δ) projective kIt. If, Δ is big, then there exists a minimal model program with scaling of an ample divisor which terminates.

Corollary: (X, Δ) projective $k l t, \Delta$ big \& $K x+\Delta$ is pseudo-effective. Then (X, Δ) admits a good minimal model

Theorem: (X, Δ) projective kill. Then
$\bigoplus_{m \geqslant 0} H^{0}\left(X, \theta_{x}(m(k x+\Delta))\right)$
is finitely generated over \mathbb{K}.
(X, Δ) kit, Δ big.
MMP with scaling
$K x+\Delta$ prof $(x, \Delta) \cdots\left(X^{\prime}, \Delta^{\prime}\right)$ kIt,Δ^{\prime} big.
$K_{x^{\prime}}+\Delta^{\prime}$ is semiample.
$K x+\Delta$ not pref $(X, \Delta) \ldots X^{\prime}$
\downarrow Mon fiber spice
MMP with scaling.

Flops connect minimal models:
$\pi: X \longrightarrow U$ prog morphium between gp normal $\left\{\begin{array}{l}X, Y_{1}, Y_{2} \\ \text { assumed } \\ \text { to be } \\ Q-j_{2} \text { cool. }\end{array}\right.$
(X, Δ) kIt, Δ big over U.
$\phi_{i}: X \cdots Y_{i}$ for $i=1,2$ bo two minimal
models for (X, Δ). over U. Let $\Gamma_{i}=\phi_{i *} \Delta$
Then $Y_{1} \longrightarrow Y_{2}$ is a composition of $\left(K_{r_{1}}+I_{1}\right)$-flops over U. Proof:

$K_{r_{1}}+\Gamma_{1}$ is net over U.
Γ_{1} is big, $\left(Y_{1} \Gamma_{1}\right)$ all

$$
K_{r_{1}}+\Gamma_{1} \equiv z 0 . \quad \& \quad K_{r_{2}}+\Gamma_{2} \equiv 0
$$

We may replace U with Z and assume
H_{2} ample on $Y_{2} \& H_{1}$ its strict transform on Y_{1}. $\left(Y_{1}, \Gamma_{1}+H_{1}\right)$ is kIt. assume $K_{r_{1}}+\Gamma_{1}+H_{1}$ is not ned.

We perform a $\left(K_{r_{1}}+I_{1}+H_{1}\right)$-flip over U which is $2\left(K_{e_{1}}+I_{1}\right)$-flop.

$$
\begin{aligned}
& K_{r_{1}}+\Gamma_{1} \equiv K_{r_{2}}+\Gamma_{2} \equiv v 0 . \\
& K_{r_{1}^{\prime}}+\Gamma_{1}^{\prime}+H_{1}^{\prime} \text { is nef? yes } \longrightarrow \text { no } \longrightarrow \text { new flop. }
\end{aligned}
$$

$K_{r^{\prime}}+\Gamma_{r^{\prime}}+H_{Y^{\prime}}$ is semiample
$K_{r_{2}}+I_{2}+H_{2}$ is ample \longleftrightarrow is the ample model.

Proof by Kawamat2:

L^{\prime} ample on $X^{\prime} . \quad(X, B+2 L)$ кlt.

$$
\begin{aligned}
& \left(x_{n}, B_{n}+2 L_{n}\right) \text { klt \& } \\
& k_{x_{n}}+B_{n}+2 L_{n} \text { nef. }
\end{aligned}
$$

$k(K x+B)$ is Carbier, $\quad e=\frac{1}{2 k d_{m} x+1}$.
$K x+B+e 2 L$ is not nef
$(K x+B+e 2 L)$ - neg extremal ray whichis also a
$(k x+B+2 L)$-negative.

$$
0>((K x+B+2 L) \cdot C) \geqslant-2 \operatorname{dim} x
$$

$C l_{\text {aim: }} \quad\left(k_{x}+B\right) \cdot C=0$.
Proof: Assume otherwise that $\left(K_{x}+B\right) \cdot C>0$. Then $(K x+B) \geqslant \frac{1}{K}$.

$$
\begin{gathered}
(k x+B+e 2 L) \cdot C=\geqslant_{-2 \operatorname{dim} x}^{2 k \operatorname{dim} x+1}((k x+B+2 L) \cdot C)+\frac{2 k \operatorname{tin} x}{2 k \operatorname{din} x+1}((k x+B) \cdot C) \\
\geqslant \frac{1}{2 k \operatorname{dim} x+1}(-2 \operatorname{dim} x+2 \operatorname{dim} x)=0 \\
k x+B
\end{gathered}
$$

Remarks: The sequence of flops ${ }^{V}$ that Kawamila constructs are obtaned by a MMP with scaling of

Fans vanities are Mori dream space:
Corollary: $\quad \pi: X \longrightarrow U$ pros morphine.
$A \geq 0$ ample \mathbb{Q}-divisor over U. $\quad \Delta_{i}=A+B_{i}$
where $B_{i} \geqslant 0$-divisors. Assume $\left(X, \Delta_{1}\right)$ are dill.
$k_{x}+\Delta_{i}=D_{i}$. Then the ring

$$
R\left(\pi, D^{\bullet}\right)=\bigoplus_{m \in \mathbb{N}^{k}} \pi_{*} O_{*}\left(L \sum_{m ; 1,}^{1} \mid\right)
$$

is a finitely generated θ_{U}-module
Proof: $f_{i} Y \longrightarrow X$ log resolution of all the $\left(X, \Delta_{i}\right)$

$$
K_{\tau}+\underbrace{\Gamma_{i}}_{\substack{\Gamma_{i} \\ v_{1}}}=\pi^{*}\left(K_{x}+\Delta\right)+\underbrace{E_{i}}_{\substack{v_{1} \\ 0}}
$$

Assume A ample on X. F exceptional sit $f^{*} A-F$ ample on Y.
$\log _{\text {snath }}$ and $\left(Y, \Gamma_{i}+F\right)$ is kIt. $A^{\prime} \sim 0 f^{*} A-F$ genera ample

$$
\begin{aligned}
& G_{i}=K_{+}+I_{i}+F-f^{*} A+A^{\prime} \sim 0, v K_{-}+I_{i} . \\
& R\left(R, D^{0}\right) f g \Longleftrightarrow R\left(R \circ f, G^{\bullet}\right) f g .
\end{aligned}
$$

These rings hive 1 rom pronation

Replace X and Δ is with Y and Ii's
Di's Gi's.
$m \Delta i$ Weir divisors. $\left.\quad E=\bigoplus_{i=1}^{k} \theta_{x} C_{m} \Delta_{i}\right)$

$$
Y=\mathbb{P}_{X}(E), \quad f: Y \longrightarrow X
$$

$\bar{\sigma}_{i} \in \theta_{x}\left(m \Delta_{i}\right)$, with zero lows $m \Delta_{1}, \sigma=\left(\sigma_{1} \ldots, \sigma_{k}\right) \in H^{\prime}(x, E)$ S the divisor of σ in Y. T_{1}, \ldots, T_{K} sections of E.

$$
T=T_{a}+\ldots+T_{k}, \quad I=T+S / m
$$

$\theta_{r}\left(m\left(k_{r}+I\right)\right)$ is the tautological line bundle associated to $E\left(m k_{x}\right)$.

Thus, $R\left(R, D^{\cdot}\right) \simeq R\left(R_{0}, m\left(K_{r}+\Sigma\right)\right)$.
\longrightarrow reduce to the case $k=1$.
$C_{\text {aim：}}\left\{\begin{array}{l}\text { We need to check } \quad \Gamma=\text { ample＋eft } \\ \&(Y, I) \text { is dIt：}\end{array}\right.$
(Y, Γ) is \log smooth outside $\operatorname{supp} \Gamma$ ．
Adjuction＋induction proves that (Y, Γ) is dit around Γ ．
$f^{*} A \leq s / m \leq \Gamma$ ．$\quad T$ ample over X ．
Hence，$f^{*} A+\varepsilon T$ is ample on T（over U ）．

$$
A^{\prime} \sim 0,0 \quad f^{\prime} A+\varepsilon T \quad \text { general ample }
$$

Then，we write：

$$
\begin{aligned}
& k_{x}+I_{11}^{\prime}=k_{x}+\Gamma-\varepsilon T_{1}-ナ ゚ A+A^{\prime} \sim \theta_{0, v} \quad k_{r+\Gamma} \\
& \text { ample +eff } \\
& \left(Y, I^{\prime}\right) \mathrm{k} / t \text {. } \\
& R\left(\text { rom, } m\left(K_{T}+\perp\right)\right) \simeq R\left(\text { ref }, m\left(K_{T}+I^{\prime}\right)\right)
\end{aligned}
$$

Corollary: $\pi: X \rightarrow U$ projective, U affine.
$X \mathbb{Q}$-factonal, (X, Δ) dIt, $-\left(K_{x}+\Delta\right)$ ample over U.
Then X is a MDS.
Proof: $h^{\prime}\left(\theta_{x}\right)=0$ (from $K V$).
D_{1}, \ldots, D_{k} dNisol) generity $N^{2}(x)$.

$$
\begin{aligned}
& I \in\left|-m\left(K_{x}+\Delta\right)\right| \text { genera! } \\
& (X, \Delta+I / m) \text { kIt } K_{x}+\Delta+\Gamma / m \sim 0,00 \\
& \left(X, \Delta+I / m+\frac{1}{n} D_{i}\right) \text { kill. } \\
& n\left(\left\lvert\, k x+\Delta+I / m+\frac{1}{n} D_{i}\right.\right) \sim a D_{i}
\end{aligned}
$$

Moduli spaces of cures:
Corollary (1.2.1): Let $X=\overline{M_{\text {gin }}}$.
Δ i with $1 \leq i \leqslant k$ denote the bound in devon.

$$
\Delta=\Sigma_{i}, a_{i} \Delta_{i}, \quad 0 \leqslant \alpha_{i} \leqslant 1 \text {. Then }(x, \Delta) \text { is log }
$$

canomas . It $k_{x+} \Delta$ is big, then it hes an ample model. If $a_{i} \geqslant \delta$, for some fixed δ, then the ample models obtained are only finitely many.

Lemma: $\quad X=\overline{M_{g}}, \quad X$ is Q-factorial and kill.
$D=$ reduced boundary. $(X, D) \log$ canonical and $K_{x}+D$ is ample.

Lemma: $X=\overline{M g}_{g i n}, X$ is Q-factorial and k lt. $D=\operatorname{reduced}$ boundary. (X, D) \log canonical and $K_{x}+D$ is ample.

Proof. (X, D) is locally the quotient of a normal crossing pair
If $n=0$, then $K_{x}+D$ is ample (Mumford, 1977)

$$
\begin{aligned}
& r=\overline{M g g}, n+1^{(Y, G)} \longrightarrow \bar{M}_{g, n} . \\
&(X, D)
\end{aligned}
$$

definition of stable pairs, we get $K_{\bar{\mu}_{g, n+1}}+\Gamma$.
has positive degree on the fibers of ψ.
Hence $K_{x}+G$ is π-ample.

We can write.
Towirds ample cone of $\overline{M_{g}}$ Gluey, Koel Monition
$K_{Y}+G=R^{*}\left(K_{x}+D\right)+\psi$ where ψ is net
$K x+D$ is ample by induction on n.
$\varepsilon \geq 0$ small enough.

$$
\varepsilon(K Y+G)+(1-\varepsilon) \pi^{*}\left(K_{x}+D\right) \text { ample }
$$

Then

$$
\begin{aligned}
k_{r}+G & =\varepsilon\left(k_{r}+G\right)+(1-\varepsilon)\left(k_{r}+G\right) \\
& =\underbrace{\varepsilon\left(k_{r}+G\right)+(1-\varepsilon) r^{*}\left(k_{x}+D\right)+\underbrace{(1-\varepsilon) \psi}_{\text {net }}}_{\text {ample }}
\end{aligned}
$$

Proof of (1.2.1): $k_{x}+D$ is ample \& log canonical. Hence, $k_{x}+\Delta$ is kit provided $a_{i}<1$.

$$
\text { Pick } \underset{0}{\underline{t}} A \sim_{a} \delta\left(K_{x}+D\right) \quad a_{i} \geqslant \delta
$$

general ample. Note that.

$$
\begin{aligned}
& (1+\delta)\left(k_{x}+\Delta\right)=k_{x}+\underbrace{\delta\left(k_{x}+\Delta\right.})+\underbrace{(1+\delta) \Delta-\delta D} \\
& \sim_{a} K_{x}+A^{\prime}+\underset{v_{1}}{B_{v}}
\end{aligned}
$$

kit with boundary of the form $A+B_{20}$

$$
\begin{aligned}
& 0 \leqslant(\Delta-\delta D)+\delta \Delta=B=\Delta+\delta(\Delta-D) \leqslant D . \\
& B \leqslant D
\end{aligned}
$$

Then, we can apply finiteness of ample models.

Singularity Theory:
$\left(X_{i} x\right)$ an algebraic sing.
$\varphi: Y \longrightarrow X$ projective birational
$\begin{array}{ll}U \prime \\ E & \varphi \text { is an isomorphism between } Y \backslash E \simeq X \backslash|x|\end{array}$
Tackle question on $(X ; x)$ by studying the projective variety E. This is called a global-to-local principle

Corollary 1.4.3: Let (X, Δ) be a kit pair.
Ce be a finite set of divisorial valuations over X with log disucpancies in the interval $(0,1)$.
Them we may find a projective birational morphism
$r: Y \longrightarrow X$, set Y is \mathbb{Q}-factorial and the exceptional divisors of π correspond to elements of C

Proof: $W \xrightarrow{f}$ log resolution
extracting all the divisors correspontry to elements of le

$$
\begin{array}{r}
k_{w}+\Psi=f^{0}\left(k_{x}+\Delta\right)+E^{i} \\
f_{\times} \psi=\Delta . \quad \Psi \wedge E=0 .
\end{array}
$$

$F=$ sum of all prime divisors, exceptionals over X, neither on E nor le.
$\Phi=\Psi+\varepsilon F$ for ε small enough

$$
\left|k_{w}+\Phi\right|=k_{w} \cdot \Psi+\varepsilon F .
$$

$\rightarrow h_{25} 2$ good minima model over X.
kIt. Φ big over X.

$$
W \xrightarrow{g} \quad g * \Phi=I, \quad g_{1}(E+\varepsilon F)=\stackrel{E}{\prime}_{\prime \prime}^{\prime \prime}
$$

The only divisors that we extant on Y are those in C.

